С какой силой бьет молния. Молния

Огромные сполохи природной энергии – молнии, давно привлекают внимание людей. После того, как была установлена электрическая природа молний, люди стали подробнее изучать это явление. Естественно, рассматривался вопрос о практическом использовании энергии молний. Для этого, прежде всего, необходимо определить запас энергии молнии.

Максимальная разница потенциалов молнии достигает 50 миллионов вольт, а ток до 100 тысяч ампер. Для расчётов энергии молнии возьмем цифры ближе к средним для большинства молний, а именно: напряжение 20 миллионов вольт и ток 20 тысяч ампер.

При грозовом разряде, электрический потенциал уменьшается до нуля. Поэтому для того, чтобы правильно определить среднюю мощность грозового разряда, в расчётах надо брать половину первоначального напряжения.

Тогда мы имеем мощность электрического разряда:

Получается, что мощность грозового разряда молнии 200 миллионов киловатт. Длительность молнии составляет около тысячной доли секунды, а в каждом часе 3600 секунд. По этим данным можно определить общее количество энергии, которую даёт разряд молнии.

При цене электрической энергии 3 рубля за 1 кВт.ч., стоимость энергии, при условии полного использования всей энергии молнии, составит 166,67 рубля.

На большей части России частота ударов молнии в пределах 2 – 4 в год на квадратный километр, в горных районах до 10 ударов молнии. Из всех видов молний, как источник энергии нас может интересовать только разряд между землёй и электрически заряженными облаками. Для покрытия квадратного километра нужно большое количество молниеотводов. Технически возможно собрать небольшую часть электричества от молнии в высоковольтных конденсаторах. Понадобятся также преобразователи с функцией стабилизации напряжения. Но, как показывает расчёт энергоёмкости конденсаторов , для хранения даже небольшого количества электрической энергии, нужны конденсаторы огромной ёмкости и размеров. Стоимость такого оборудования будет на много порядков дороже стоимости полученной электрической энергии, даже при регулярном, например, ежегодном пополнении энергии разрядами молнии.

Подобные расчёты энергии молнии приводились в технической литературе. Реально получить и использовать, например, на нагрев воды, можно только небольшую часть этой энергии. Основная часть энергии молнии расходуется при искровом разряде на нагрев атмосферы и даже теоретически потребители могут использовать меньшую часть энергии молнии.

Для примера рассчитаем, сколько энергии потребляет на нагрев, например, такое устройство, как громоотвод. Электрическое сопротивление воздушного промежутка, молниеотвода и заземления, которое преодолевает молния при усредненных характеристиках разряда составит:

R = U/I = 20 000 000 В: 20 000 А = 1000 Ом

Расчёт сопротивления проводника громоотвода можно сделать по известной методике, если известны материал, его удельное сопротивление, длина и толщина провода. Но, для нашего примера, будем считать сопротивление проводника равным одному 1 Ом, а сопротивление заземления 4 Ома.

Если сопротивление молниеотвода в тысячу раз меньше, общего сопротивления для молнии, то по закону Ома для участка цепи падение напряжения на участке цепи (громоотводе), прямо пропорционально сопротивлению. А значит мощность, которая выделяется в виде тепла на молниеотводе, будет в тысячу раз меньше общей мощности или количеству энергии, которое выделяется на молниеотводе. В нашем примере это количество энергии будет равно 55,556 Вт.ч., что очень незначительно. Зная теплоёмкость материала молниеотвода и его массу, можно определить, на сколько градусов повысится температура молниеотвода.

Для повышения мощности потребителя, необходимо повысить электрическое сопротивление потребителя. Оптимальным вариантом для источника и потребителя электрической энергии является согласований сопротивлений, когда эти сопротивления равны. Нужно иметь в виду, что при увеличении общего сопротивления токопроводящей цепи уменьшится величина тока, а разность потенциалов останется прежней. Это приведёт к уменьшению общей энергии молнии и снизит без того небольшую вероятность грозового разряда.

Электрические разряды молнии

Феномены грозовых разрядов в течение многих лет представляют собой особый объект моих исследований в области электричества. Сначала меня привлекала исключительно грандиозность проявлений, но спустя некоторое время, когда я приступил к исследованию атмосферного электричества, меня заинтересовала молния по причине той удивительной роли, которую она играет в структуре мироздания. Обычному человеку даже в голову не может прийти, что своим существованием мы обязаны этой действующей силе, так как она служит средством управления выпадением осадков. Солнце превращает воды океана в пар, а воздушные потоки переносят эти крошечные капли в отдаленные регионы, где они пребывают в состоянии тонкой взвеси до тех пор, пока электрические силы не заставят их соединиться в плотные массы облаков. Когда напряжение становится избыточным, происходят вспышки и в результате выпадают обильные дожди. Итак, всё сводится к тому, что молния поддерживает круговорот воды и, следовательно, саму жизнь.

Не хочу быть превратно понятым, утверждая, что если бы не молния, не было бы дождя. Однако то, что она является главной регулирующей силой, - достоверный факт.

Когда-то давно считалось, что человек невластен генерировать силы электрического взаимодействия и возмущения, сравнимые с теми, свидетелями которых мы являемся в определенных условиях. Но путем постепенного усовершенствования методов и приборов в сфере электричества мы достигли такого уровня, когда становится очевидным, что человек будет обладать способностью превращать пустыни в плодородные земли и создавать озера и реки в каких угодно местах, открывая, таким образом, неисчерпаемый источник энергии и многократно увеличивая плодородие почвы.

В отношении энергии молний существует много широко известных концепций, дающих неправильное представление. Начиная эти исследования, я был убежден, что разряд молнии располагает мощностью не более чем в несколько лошадиных сил, но, углубив свои знания, я убедился, что ее мощность огромна. Обычно считается, что напряжение разряда молнии, а также электрического тока, проходящего через дугу, составляет среднюю величину, но в действительности напряжение зачастую достигает сотен миллионов вольт, а сила тока нередко составляет несколько миллионов ампер.

Энергия молнии составляет половину того, что может дать электрическая емкость облака, и на нее затрачивается четверть электрического потенциала. Когда происходят разряды, весьма значительная часть энергии рассеивается в виде электромагнитных волн, еще одна существенная часть энергии проявляется в тепловом эффекте, а еще одна часть - в звуке и в свете. Возможно, вы получите представление об энергии, содержащейся в молнии, если я скажу, что иногда одной лишь звуковой волны, в которую вовлечена очень небольшая часть энергии, хватило бы, чтобы мотор мощностью в 200 л.с. работал в течение года. Однако совокупная энергия разряда молнии такова, что двигатель в 5 000 л.с. мог бы работать на полную мощность в течение года, а в некоторых случаях количество энергии намного больше. Причина очень большого напряжения в облаке может быть объяснена тем фактом, что кривизна нижней поверхности облака очень мала, так что требуется огромное напряжение, чтобы пробить слой воздуха. Для иллюстрации: если бы большая поверхность была сферой с радиусом около 40 сантиметров, то потребовалось бы более 3 миллионов вольт, чтобы создать электрический стример, напряжение возрастает прямо пропорционально радиусу сферы, так что разряд, исходящий из такого тела, как облако, нижняя поверхность которого в сущности плоская, потребует напряжения в миллиарды вольт.

Существует распространенное мнение, что молния всегда ударяет из облака в землю, но на самом деле самые мощные разряды исходят от земли по направлению к облаку. Я видел несколько таких разрядов, которые на расстоянии пятнадцати миль от точки наблюдения выглядели подобно гигантским огненным деревьям с бесчисленными ветвями, расходившимися от очень мощного ствола, уходившего в землю. Согласно моим расчетам, основанным на экспериментальных данных, полученных с помощью радиопередатчика, я пришел к выводу, что сила тока на земле должна составлять несколько миллионов ампер.

В здешних краях грозы случаются сравнительно редко, но есть места, где они происходят более чем часто. Чтобы не быть голословным, приведу один пример: 3 июля 1899 года мои приборы зафиксировали почти 13 000 разрядов в течение двух часов, и все они произошли в радиусе каких-нибудь, скажем, пятнадцати миль от моей радиостанции в Колорадо-Спрингс. Энергия грозовых разрядов за время их проявления достигала нескольких миллиардов л.с., но я позволю себе упомянуть примечательный факт, вызвавший мой особый интерес: иногда случаются грозовые разряды, которые не содержат в себе энергии более чем в несколько л.с. В двух или трех случаях я наблюдал такие слабые разряды, что путь крошечной искры от облака до земли был едва видим, а произведенный при этом звук вообще нельзя было сравнить даже со слабым щелканьем хлыста. Когда мы представляем себе молнию, мы не можем не вспомнить великого человека, на чьем надгробии написано: «Он вырвал у неба молнию, и затем у тиранов - скипетры». Но Франклин допустил одну ошибку, возможно, единственную в жизни: он считал, что остроконечные выступы якобы разрядят грозу в землю и тем самым уберегут здание, оборудованное таким громоотводом. В те времена у него не было никаких оснований для таких умозаключений, кроме результатов наблюдений, полученных в опытах с электростатической машиной, которая, как он представлял, будет разряжаться благодаря остроконечному выступу. Истина как раз в обратном. Остроконечный выступ побуждает щетку ионизировать окружающий воздух и притягивает молнию, так что здание, оборудованное такого рода стержнем, будет поражаться гораздо чаще, чем если бы у него не было этого средства «защиты», но, к счастью, Франклин был прав во второй части своей теории, а именно в том, что молния будет уходить в землю, не причиняя большого вреда. Как правило, это так, но время от времени, когда разряд слишком мощный, он минует громоотвод, причиняя разрушения. Данные исследований мощных электрических разрядов, проведенных с беспроводным передатчиком, построенным на принципиально иной основе, дали мне возможность разработать тип молниеотвода, который практически действует безотказно. В основе устройства лежит принцип недопущения аккумулирования электричества, так что молния ударит в любое иное место, предпочтя его тому, которое, таким образом, будет защищено. Это устройство, вне всяких сомнений, доказало свою эффективность, так как до сих пор ни одно сооружение, оберегавшееся таким способом, не было поражено, а путем исчисления вероятностей можно доказать, что возможность даже прямого поражения объекта приближается к бесконечно малой величине. Подавляющее большинство людей боятся молнии и вообще не знают, что делать в случае опасности. Этим людям следует знать, что прежде всего в городах подобных нашим, где здания практически полностью построены из стальных конструкций, абсолютно невозможно получить травму, какой бы сильной ни была гроза, но на открытом пространстве за городом, если вы идете пешком или едете в автомобиле, необходимо незамедлительно принять меры предосторожности при приближении грозы. Вы всегда будете в полной безопасности, если предпочтете впадину в земле и будете держаться подальше от деревьев и высоких строений. Не следует разводить костер или оставаться на открытом месте, а если вы находитесь в деревянном доме, вам следует быть в центре помещения и как можно дальше от металлических предметов.

Из книги Александр Великий или Книга о Боге автора Дрюон Морис

XVI. Молнии подобный Освободившись от ига Филиппа, Греция полагала, что длань Александра будет для нее не столь тяжела. Прошло не больше недели, как в Фессалии уже намечался мятеж; одна из колоний на юге Эпира изгнала македонский гарнизон; Аркадия и Этолия объявили о

Из книги Симфония «Пятой Империи» автора

Электрические люди Бурейская ГЭС – гигантская шершавая плотина, упертая в скалы. Дышит паром, отекает ручьями сварки. В наледях, в тяжких сосульках, в блестках огня и стали. Будто громадное, непомерных размеров тулово легло в реку, уткнулось башкой и крестцом в соседние

Из книги Технологии «Пятой Империи» автора Проханов Александр Андреевич

Покров Богородицы и молнии ненависти Во времена, когда над Кремлем развевался красный флаг, я ходил в Средиземном море на кораблях советской «Пятой эскадры», осуществлявшей противодействие американскому Шестому флоту. Среди эпизодов борьбы, протекавшей на воде, в

Из книги Откровения Николы Теслы автора Тесла Никола

Из книги Кунсткамера аномалий автора Непомнящий Николай Николаевич

Монеты и молнии. Неизвестное окружает нас повсеместно, таясь, порой под самыми нашими ногами. Это подтверждает история, происшедшая в 1996 году под городом Коростень Житомирской области. Обычная лесная поляна, ничем, казалось бы, непримечательная, вдруг загадала столько

Из книги Загадки Бермудского треугольника и аномальных зон автора Войцеховский Алим Иванович

«Электрические грозы» под землей О существовании электрической энергии в недрах Земли знали еще в XIX веке, но геологи не придавали ей большого значения в геологической жизни планеты. Почему-то считалось, что в формировании внутренних сфер Земли участвуют только силы

Из книги Статьи автора Тесла Никола

29 Электрические генераторы переменного тока Научные направления, исследования в которых оказались так же плодотворны, как в области токов высокой частоты, немногочисленны. Уникальные свойства этих токов и поразительная природа явлений, которые они продемонстрировали,

Из книги Собрание автора Шварц Елена Андреевна

Олег Дарк Танец молнии Дарк Олег Ильич - писатель, эссеист. Родился в 1959 году в Москве; окончил филологический факультет МГУ. Автор книги рассказов “Трилогия” (1996), многочисленных публикаций в журналах “Дружба народов”, “Знамя”, “Вопросы литературы” и др. В “Новом

Из книги Газета День Литературы # 174 (2011 2) автора День Литературы Газета

Наталья ФЕДЧЕНКО ОТ МОЛНИИ К РАДУГЕ Дорогой Владимир Григорьевич! Более четырех десятков лет Вы служите русскому слову, русской духовности. И всё это время не перестаёте удивлять читающую Россию своими яркими критическими работами и неожиданными

Из книги Том 5. Очерки, статьи, речи автора Блок Александр Александрович

Молнии искусства <Неоконченная книга «Итальянских

Из книги Итоги № 11 (2012) автора Итоги Журнал

Удар молнии / Автомобили / Новости Удар молнии / Автомобили / Новости В проморолике, расхваливающем очередной Infiniti, силуэт спорткара появляется в окружении молний. Разряды электричества вовсе не метафора: EMERG-E - одна из самых мощных машин, в

Из книги Четыре цвета Путина автора Проханов Александр Андреевич

Покров богородицы и молнии ненависти 18.10.2006Во времена, когда над Кремлем развевался красный флаг, я ходил в Средиземном море на кораблях советской «Пятой эскадры», осуществлявшей противодействие американскому Шестому флоту. Среди эпизодов борьбы, протекавшей на воде, в

Из книги Другой России не будет автора Беляков Сергей

Гром и молнии Полтавы День российской армии нельзя праздновать 23 февраля. Каждый, кто хоть немного интересуется историей, со мной согласится.Столкновения с ничтожными по численности (от 60 до 200 человек) немецкими отрядами окончились позорным бегством наспех

Из книги Погибли без боя. Катастрофы русских кораблей XVIII–XX вв. автора Чернышев Александр Алексеевич

Молнии, спалившие галерный флот Пожар на корабле – опасность не меньшая, чем вода. Корабли горели часто. В эпоху парусного флота деревянные корпуса и рангоут, просмоленные канаты такелажа, просушенные солнцем паруса – все это было отличной «пищей» для огня. Чесма,

Из книги 1000 чудес со всего света автора Гурнакова Елена Николаевна

Загадки шаровой молнии Существует редкое и загадочное природное явление - шаровая молния. Мифическая шаровая молния - концентрат таинственной энергии, крайне опасной для человека. Говорят, что она разрушает дома и убивает животных, гоняется за людьми; при встрече с ней

Из книги Психоз планеты Земля автора Островский Борис Иосифович

Разумны ли шаровые молнии? В 1888 году на заседании Британского королевского научного общества выдающийся физик лорд Кельвин заявил: «Светящиеся электрические шары – это всего-навсего обман зрения, иллюзия, порождаемая яркой вспышкой света от обычной линейной молнии».

Грозы случаются на нашей планете чаще 40 тысяч раз в день - около 100 вспышек молний каждую секунду. Но до сих пор это явление до конца не изучено. «Теории и практики» публикуют отрывок из книги Уолтера Левина и Уоррена Гольдштейна «Глазами физика. От края радуги к границе времени» , которую издательство «МИФ» подготовило к выставке Non/fiction . Авторы объясняют, что такое молния и может ли от нее спасти громоотвод, автомобиль или кроссовки на резиновой подошве.

Конечно, один из самых опасных видов тока - молния, которая также относится и к числу самых замечательных электрических явлений, мощных, не вполне предсказуемых, не до конца понятных и таинственных - в общем, настоящий коктейль. В мифах разных народов - от древних греков до индейцев майя - разряды молнии описываются либо как символы божеств, либо как орудие их возмездия. И это неудивительно. В среднем на земле ежегодно проходит около 16 миллионов гроз (более 43 тысяч ежедневно и примерно 1800 ежечасно), которые ежесекундно производят около 100 вспышек молний, или более 8 миллионов молний в день. Это в масштабах всей планеты.

Молния - это следствие заряжения грозовых облаков. Обычно верхняя часть облака заряжается положительно, а нижняя - отрицательно. Почему именно так, ученые пока до конца не разобрались. Хотите верьте, хотите нет, но в физике атмосферы еще очень много вопросов, на которые предстоит ответить. А пока в целях простоты обсуждения давайте несколько упростим ситуацию, представив себе облако, отрицательно заряженное на той стороне, которая находится ближе к земле. Из-за индукции земля, ближе всего расположенная к облаку, заряжается положительно, и между нею и облаком возникнет электрическое поле.

С физической точки зрения разряд молнии довольно сложен, но, по существу, ее вспышка (электрический пробой) возникает, когда электрический потенциал между облаком и землей достигает десятков миллионов вольт. И хотя мы нередко думаем о разряде молнии как о «стрельбе» с облака в землю, на самом деле движение идет и с облака на землю, и с земли на облако. Сила электрического тока во время разряда молнии средней интенсивности составляет около 50 тысяч ампер (хотя может достигать и нескольких сотен тысяч ампер), а максимальная мощность достигает около триллиона (1012) ватт, но продолжается это всего несколько десятков микросекунд. Тем не менее полная энергия, выделяющаяся в момент удара молнии, редко превышает несколько сотен миллионов джоулей, что эквивалентно энергии, потребляемой за месяц стоваттной лампочкой. Так что идея сбора энергии молнии совершенно непрактична и нецелесообразна.

Большинству из нас известно, что определить, как далеко от нас ударила молния, можно по времени, которое проходит между моментами, когда мы видим разряд и слышим гром. Причина, которой это объясняется, позволяет нам также получить кое-какое представление о мощных силах, задействованных в данном процессе. И она, кстати, не имеет ничего общего с объяснением, однажды услышанным мной от своего студента: что молния создает нечто вроде области низкого давления, куда устремляется воздух и сталкивается там с воздухом, поступающим с другой стороны, в результате чего получается гром. На самом деле все происходит практически в точности до наоборот. Энергия разряда нагревает воздух примерно до 20 тысяч °С, то есть до температуры, более чем в три раза превышающей температуру поверхности Солнца. Затем этот суперразогретый воздух создает мощную волну давления, она сталкивается с холодным воздухом вокруг нее, создавая звуковые волны, которые распространяются в воздухе. Так как звуковые волны в воздухе перемещаются со скоростью около полутора километров за пять секунд, подсчитав секунды, вы можете довольно легко выяснить, насколько далеко от вас ударила молния.

Тем фактом, что молния столь сильно нагревает воздух, объясняется и другое явление, с которым вы, возможно, сталкивались во время грозы. Вы когда-нибудь замечали, насколько свежий, особый запах стоит в воздухе после грозы, словно буря очистила его? Конечно, в большом городе это трудно почувствовать, потому что там воздух практически всегда пропитан выхлопными газами от автомобилей. Но даже если вам посчастливилось услышать этот замечательный аромат, вы вполне можете не знать, что это запах озона, молекулы кислорода, состоящей из трех атомов кислорода. Как известно, нормальные молекулы кислорода - без какого-либо запаха - состоят из двух атомов кислорода, и мы записываем их как O2. Но потрясающий жар от молнии разбивает эти молекулы - не все, но достаточное количество, чтобы оказать определенный эффект. Получившиеся в результате отдельные атомы кислорода сами по себе нестабильны, поэтому прикрепляются к нормальным молекулам О2, создавая вещество О3 - озон.

Однако следует отметить, что озон приятно пахнет только в небольших количествах; в высоких концентрациях его запах не столь привлекателен. Его можно почувствовать, например, под высоковольтными проводами. Если вы слышите жужжащий звук, исходящий от проводов, это обычно означает, что там происходит искрение, называемое коронным разрядом, в результате которого и создаются молекулы озона. Когда нет сильного ветра, как правило, можно почувствовать довольно неприятный запах.

«Молния ударяет в самолеты в среднем более одного раза в год, но благодаря скин-эффекту они благополучно переживают эти удары»

А теперь вернемся к идее, что человека от последствий удара молнии могут спасти надетые на него кроссовки на резиновой подошве. Разряд молнии в 50–100 тысяч ампер, способный разогреть воздух до температуры, более чем в три раза превышающей температуру поверхности Солнца, почти наверняка сожжет вас дотла, заставит биться в конвульсиях от сильнейшего поражения электрическим током или попросту взорвет вас, мгновенно превратив всю воду в вашем теле в сверхгорячий пар. Совершенно независимо от того, во что вы обуты. Именно это происходит с деревом, в которое ударила молния, - сок в нем взрывается и срывает с него всю кору. Сто миллионов джоулей энергии - эквивалент почти тридцати килограммов динамита, - это вам не фунт изюма.

А как насчет того, безопасно ли находиться внутри автомобиля, защищающего вас от удара молнии благодаря резиновым шинам? Автомобиль действительно может защитить вас в этой ситуации (однако никаких гарантий!), но по совершенно иной причине. Дело в том, что электрический ток течет по поверхностным слоям проводника (это явление называется скин-эффектом), и, сидя в автомобиле, вы оказываетесь внутри металлической коробки, а металл, как мы уже знаем, хороший проводник. Вы даже можете прикоснуться к внутренней части панели воздуховода и не получить никакой травмы. Тем не менее я настоятельно призываю вас этого не делать, поскольку это крайне опасно, так как в большинстве современных автомобилей используются детали из стекловолокна, а в этом материале скин-эффект отсутствует. Иными словами, если молния ударяет в ваш автомобиль, вы - да и ваша машина - можете пережить не самые приятные секунды в жизни. Если интересно, посмотрите короткое видео , где показано, как молния поражает автомобиль. Думаю, вы сразу поймете, что с этим шутить не стоит!

На наше в вами счастье, с самолетами ситуация совершенно другая. Молния ударяет в них в среднем более одного раза в год, но благодаря все тому же скин-эффекту они благополучно переживают эти удары. Смотрите видео .

Есть еще один знаменитый эксперимент, связанный с молниями, авторство которого приписывают Бенджамину Франклину, но я настоятельно не рекомендую вам его проводить. Речь идет о запуске во время грозы воздушного змея с привязанным к нему металлическим ключом. Предположительно Франклин так намеревался проверить гипотезу о том, что грозовые облака создают электрический огонь. Он рассуждал следующим образом: если молния действительно является источником электроэнергии, то как только бечевка змея намокнет от дождя, она станет хорошим проводником (хотя ученый не использовал этого слова) электричества и оно пройдет вниз, к ключу, привязанному к ее концу. Рассказывают также, что стоило Франклину поднести руку к ключу, как тут же появлялась яркая искра. Так вот, как и в случае с Ньютоном, который на закате своей жизни якобы утверждал, что на создание закона всемирного тяготения его вдохновило яблоко, упавшее на землю с дерева, никаких современных доказательств того, что Франклин когда-либо действительно проводил этот эксперимент, нет. Есть только отчет в письме, посланном им в Королевское научное общество в Англии, и еще один письменный документ, составленный пятнадцать лет спустя другом Франклина Джозефом Пристли (кстати, первооткрывателем кислорода).

«Сто миллионов джоулей энергии - эквивалент почти тридцати килограммов динамита, - это вам не фунт изюма»

Но проводил ли Франклин этот эксперимент или нет - что было бы фантастически опасно и с очень высокой вероятностью привело бы к гибели великого изобретателя, - описание другого эксперимента он опубликовал точно. В данном случае задача была - увести молнию в землю, для чего ученый установил на верхушке башни длинный железный стержень. Несколько лет спустя француз Томас-Франсуа Далибар, который встретился с Франклином и перевел его идеи на французский язык, провел этот эксперимент в несколько иной версии и стал свидетелем поистине невероятного явления. Далибар установил железный стержень длиной больше 10 метров и, направив его в небо, увидел у его не заземленного основания искры.

Впоследствии профессор Георг Вильгельм Рихман, выдающийся ученый, родившийся в Эстонии и живший в Санкт-Петербурге, член Санкт-Петербургской Академии наук, много лет изучавший электрические явления, очевидно, вдохновленный экспериментом Далибара, решил также попробовать его провести. Как рассказывает Майкл Брайан в интереснейшей книге Draw the Lightning Down: Benjamin Franklin and Electrical Technology in the Age of Enlightenment («Как обезвредить молнию: Бенджамин Франклин и электротехника в эпоху Просвещения»), Рихман приладил железный прут к крыше своего дома и медной цепью соединил его с прибором для измерения электричества в своей лаборатории, расположенной на первом этаже.

Как нарочно - а может, это был знак судьбы, - в августе 1753 года во время заседания Академии наук разразилась сильнейшая гроза. Рихман бросился домой, захватив с собой художника, который должен был иллюстрировать его новую книгу. Пока Рихман наблюдал за оборудованием, ударила молния, прошла вниз по стержню и цепи, выпрыгнула в полуметре от головы ученого, ударила его током и отбросила через всю комнату; художник тоже получил сильный удар током и потерял сознание. В интернете можно найти несколько иллюстраций этой ужасной сцены, хотя точно неизвестно, был ли их автором художник, принимавший в ней непосредственное участие.

Франклин изобрел подобную штуковину, но его детище было заземлено; сегодня оно известно под названием громоотвод. Устройство отлично заземляет удары молнии, однако не по той причине, которую предполагал Франклин. Он считал, что громоотвод будет вызывать между заряженным облаком и зданием непрерывный разряд, тем самым сохраняя разность потенциалов на низком уровне и, следовательно, снижая опасность удара молнии. Ученый был настолько уверен в своей правоте, что посоветовал королю Георгу II установить громоотводы на крыше королевского дворца и на складах с боеприпасами. Оппоненты Франклина утверждали, что громоотводы будут только притягивать молнии и что эффект разряда, снижая разность электрических потенциалов между зданием и грозовыми облаками, будет совсем незначительным. Но король, как гласит история, доверился Франклину и установил громоотводы.

Вскоре после этого молния ударила прямо в один из складов боеприпасов, но повреждения оказались минимальными. То есть стержень сработал, но по совершенно иным причинам. Критики Франклина были абсолютно правы: громоотводы действительно притягивают молнии и разрядка стержня действительно ничтожна по сравнению с огромным зарядом грозовой тучи. Но громоотвод все же дает желаемый эффект - потому что когда стержень достаточно толстый, чтобы справиться с 10–100 тысячами ампер, ток будет оставаться в стержне и заряд уйдет в землю. Получается, Франклин был не только блестящим ученым - ему еще и здорово везло!

Разве это не удивительно, что, поняв природу тихого потрескивания, раздающегося, когда мы снимаем полиэстеровый свитер зимой, мы можем также постичь суть жуткой грозы с молниями, освещающими ночное небо, и разобраться в происхождении одного из самых громких и устрашающих звуков в природе?

В некотором смысле мы все - современные версии Бенджамина Франклина, пытающиеся выяснить и постичь в этом грозном явлении то, что пока еще находится за пределами нашего понимания. В конце 1980-х годов ученые впервые сфотографировали разные формы молний, сверкающих высоко-высоко в облаках. Одна из разновидностей называется красными призраками и состоит из красновато-оранжевых электрических разрядов, происходящих в 50–90 километрах над землей. А есть еще синие струи - они гораздо больше, иногда длиной до 70 километров, и возникают в верхних слоях атмосферы. Но мы знаем о них всего лишь немногим более двадцати лет, и нам еще очень мало известно о причинах этого потрясающего природного явления. Даже несмотря на то, что люди изучили электричество уже весьма детально, грозы по-прежнему покрыты завесой тайны - а ведь они случаются на нашей планете около 45 тысяч раз в день.

Задумывались ли вы когда-то почему птицы сидят на высоковольтных проводах, а человек, коснувшись проводов, погибает? Все очень просто - они сидят на проводе, но ток через птицу не течет, но если птичка взмахнет крылом, одновременно касаясь двух фаз - умрет. Обычно так погибают большие птицы типа аистов, орлов, соколов.

Так и человек может коснуться фазы и ему ничего не будет, если через него ток не потечет, для этого нужно одевать прорезиненные ботинки и не дай Бог коснуться стены или металла.

Электрический ток способен убить человека в долю секунды, он поражает без предупрежденья. Молния ударяет в землю сто раз в секунду и свыше восьми миллионов раз в день. Эта сила природы в пять раз горячее, чем поверхность солнца. Электрический разряд бьёт с силой в 300`000 ампер и миллион вольт в долю секунды. В повседневной жизни мы думаем, что можем контролировать электричество, которое питает наши дома, наружное освещение, а теперь и автомобили. Но электричество в его первозданной форме не поддаётся контролю. А молния - это электричество в громадных масштабах. И всё же молния остаётся большой загадкой. Она может ударить неожиданно, и её путь может быть непредсказуемым.

Молния в небе не приносит вреда, но одна из десяти молний обрушивается на поверхность земли. Молния разделяется на множество ветвей, каждая из которых способна поразить человека находящегося в эпицентре. При ударе человека молнией, разряд тока может переходить от одного человека к другому, если они соприкасаются.

Существует правило тридцати и тридцати: если вы видите молнию, а менее чем через тридцать секунд услышали гром, то надо искать убежище, а затем требуется подождать тридцать минут с последнего раската грома, прежде чем выходить на улицу. Но молния не всегда подчиняется строгому порядку.

Существует такое атмосферное явление, как гром среди ясного неба. Часто молния, выходя из облака, проходит до шестнадцати километров, прежде чем ударить в землю. Другими словами, молния может появиться ниоткуда. Молнии нужен ветер и вода. Когда сильные ветра поднимают влажный воздух, возникают условия для появления разрушительных гроз.

Невозможно разложить на составляющие то, что укладывается в миллионную долю секунды. Одно из ложных убеждений состоит в том, что мы видим молнию, когда она устремляется в землю, на самом деле мы видим обратный путь молнии в небо. Молния - это не однонаправленный удар в землю, а это на самом деле кольцо, путь в две стороны. Вспышка молнии, которую мы видим, так называемый обратный удар, завершающая фаза цикла. И когда обратный удар молнии раскаляет воздух, появляется её визитная карточка - гром. Обратный путь молнии - это та часть молнии, которую мы видим как вспышку и слышим как гром. Обратный ток силой в тысячи ампер и миллионы вольт устремляются от земли к облаку.

Молния регулярно поражает электрическим током человека в помещении. Она может проникнуть в строение разными путями, по водосточным трубам и водопроводу. Молния может проникать в электропроводку, сила тока которой в обычном доме не достигает двухсот ампер и перегружает электропроводку скачками от двадцати тысяч до двухсот тысяч ампер. Возможно, наиболее опасная тропа в вашем доме ведёт прямо к вашей руке через телефон. Почти две трети ударов электрическим током в помещениях приходятся на людей, взявшие в свои руки трубку стационарного телефона во время молнии. Беспроводные телефоны более безопасны во время грозы, но молния может ударить человека электрическим током, который стоит рядом с базой телефона. Даже громоотвод не может защитить вас от всех молний, так как он не способен ловить молнию в небе.

О природе молнии

Существует несколько различных теорий, объясняющих происхождение молний.

Обычно нижняя часть облака несёт отрицательный заряд, а верхняя - положительный, что делает систему облако-земля подобной гигантскому конденсатору.

Когда разность электрических потенциалов становится достаточно большой, между землёй и облаком или между двумя частями облака происходит разряд, известный под названием молнии.

Опасно ли находиться в автомобиле во время молнии?

В одном из этих опы-тов искусственная смертельная молния в метр длиной была на-правлена на стальную крышу автомобиля, в котором находился человек. Молния прошла по обшивке, не нанеся вреда человеку. Как же так получилось? Поскольку заряды на заряженном пред-мете взаимно отталкиваются, они стремятся разойтись как можно дальше друг от друга.

В случае полого механического шара пи цилиндра заряды распределяются по внешней поверхности предмета Аналогично, если молния л дарит в металлическую крышу автомобиля, то отталкивающиеся электроны чрезвычайно быстро разойдутся по поверхности автомашины и уйдут через ее корпус в землю. Поэтому молния по поверхности металлической машины уходит в землю и не попадает внутрь автомобиля. По той же причине совершенной защитой от молнии является металличе-ская клеть. В результате ударов в автомашину искусственных молний напряжением 3 млн. вольт потенциал автомобиля и тела, находящегося в нём человека, повышается почти до 200 тыс. вольт. Человек при этом не испытывает ни малейшего признака удара электрического тока, поскольку между любыми точками его тела нет никакой разности потенциалов.

Значит, почти полностью защищает от молнии пребывание в хорошо заземленном здании с металлическим каркасом, а та-ковых много в современных городах.


Чем объяснить, что птицы совершенно спокойно и безнаказанно сидят на проводах?

Тело сидящей птицы представляет собой как бы ответвление цепи (параллельное соединение). Сопротивление этой ветви с птицей много больше, чем сопротивление провода между ногами птицы. Поэтому сила тока в теле птицы ничтожна. Если бы птица, сидя на проводе, коснулась бы крылом или хвостом столба или как-то ещё соединилась бы с землёй, она мгновенно была бы убита током, который устремился бы через неё в землю.


Интересные факты о молниях

Средняя длина молнии 2,5 км. Некоторые разряды простираются в атмосфере на расстояние до 20 км.

Молнии приносят пользу: они успевают выхватить из воздуха млн тн азота, связать его и направить в землю, удобряя почву.

Молнии Сатурна в миллион раз сильнее земных.

Разряд молнии обычно состоит из трех или более повторных разрядов - импульсов, следующих по одному и тому же пути. Интервалы между последовательными импульсами очень коротки, от 1/100 до 1/10 с (этим обусловлено мерцание молнии).

Ежесекундно на Земле вспыхивает около 700 молний. Мировые очаги гроз: остров Ява - 220, экваториальная Африка - 150, южная Мексика - 142, Панама - 132, центральная Бразилия - 106 грозовых дней в году. Россия: Мурманск - 5, Архангельск - 10, С-Петербург - 15, Москва - 20 грозовых дней в году.

Воздух в зоне канала молнии практически мгновенно разогревается до температуры 30 000-33 000° С. От удара молнии в мире в среднем ежегодно погибает около 3 000 человек

Статистика показывает, что на 5000-10000 летных часов приходится один удар молнии в самолет, к счастью, почти все поврежденные самолеты продолжают полет.

Несмотря на сокрушительную мощь молнии, уберечься от нее довольно просто. Во время грозы следует немедленно уходить с открытых мест, ни в коем случае нельзя прятаться под отдельно стоящими деревьями, а также находиться вблизи высоких мачт и ЛЭП. Не следует держать в руках стальные предметы. Также во время гроз нельзя пользоваться средствами радиосвязи, мобильными телефонами. В помещении нужно отключить телевизоры, радиоприемники и электроприборы.


Молниеотводы защищают здания от поражения молнией по двум причинам: они дают возможность стекать в воздух наве-денному на здании заряду, а при ударе молнии в здание уводят её в землю.

Попав в грозу, следует избегать укрываться возле одиноч-ных деревьев, изгородей, возвышенных мест и находиться на от-крытых пространствах.

Молнии издавна волновали и пугали людей своей непредсказуемостью, красотой и страшной разрушающей силой. Как только стала ясна электрическая природа этого явления, возник вопрос - нельзя ли "ловить" и использовать ее в мирных целях, и, вообще, сколько энергии в одной молнии.

Расчет запаса энергии молнии

Согласно данным исследований, максимальное напряжение разряда молнии составляет 50 млн вольт, а сила тока может составлять до 100 тысяч ампер. Однако для расчета запаса энергии обычного разряда лучше взять усредненные данные - разница потенциалов в 20 млн вольт и ток в 20 тысяч ампер. Во время грозового разряда потенциал уменьшается до нуля, поэтому для правильного определения мощности грозового разряда напряжение следует разделить на 2. Далее надо умножить напряжение на силу тока, получается средняя мощность грозового разряда, 200 млн киловатт. Известно, что в среднем разряд длится 0,001 секунды, поэтому мощность следует разделить на 1000. Чтобы получить более привычные данные, можно разделить результат на 3600 (количество секунд в часе) - получится 55,5 кВт.ч. Интересно будет посчитать стоимость этой энергии, при цене 3 рубля за кВт.ч. она составит 166,7 рублей.

Можно ли приручить молнии?

Средняя частота ударов молнии в России - около 2-4 на квадратный километр. Учитывая, что грозы происходят повсеместно, для их "улавливания" понадобится большое количество молниеотводов. В качестве источника энергии можно рассматривать только разряды между заряженными облаками и землей. Для сбора электричества также понадобятся высоковольтные конденсаторы большой емкости, преобразователи, стабилизирующие напряжение. Такое оборудование стоит довольно дорого, и неоднократно проводились расчеты, доказывающие неэффективность и убыточность такого способа получения энергии. Причина малой эффективности кроется, в первую очередь, в природе молнии: при искровом разряде большая часть энергии тратится на нагрев воздуха и сам громоотвод. Кроме того, станция будет работать только летом, да и то далеко не каждый день.

Загадка шаровой молнии

Иногда во время грозы появляется необычная шаровая молния. Она светится, ярко или тускло, в среднем, как 100-ваттная лампа, имеет желтоватый или красноватый оттенок, медленно движется, нередко залетает в помещения. Размер шара или эллипса варьируется от нескольких сантиметров до 2-3 метров, но в среднем составляет 15-30 см.Несмотря на пристальное изучение этого явления, природа его до сих пор не ясна. Во время грозы объекты и люди заряжаются положительно, и тот факт, что шаровая молния обходит их стороной, говорит о ее положительном заряде. К отрицательно заряженным предметам она притягивается и может даже взорваться.Появляется шаровая молния за счет энергии обычной молнии, на месте ее излома, раздвоения либо на месте удара. Существует две гипотезы ее физической сущности: согласно первой, она получает энергию извне постоянно и за счет этот "живет" некоторое время. Сторонники другой гипотезы считают,что молния становится самостоятельным объектом после возникновения и поддерживает форму за счет полученной от обычной молнии энергии. Посчитать энергию шаровой молнии еще никому не удалось.